OMI Validation Needs

Mark Kroon – KNMI (on behalf of the OMI validation team)

Aura Science Team Meeting
Aura Validation Working Group

Pasadena, CA, USA 01 October 2007

OMI Validation Priorities

Nitrogen Dioxide (NO2)

- Air quality, emission estimates, sparse correlative data

Ozone (O3)

 Air quality, human health hazard, ozone (hole) recovery, remaining retrieval challenges (tot-O3C, trop-O3C)

Aerosols

- Air quality, retrieval challenges, physics of aerosols

Sulphur Dioxide (SO2)

- Air quality, emission estimates, aviation warning

Clouds

- Influence to (tropospheric) trace gas retrievals
- "Minor" trace gases (Bro, OCIO, HCHO, CHO-CHO)
 - Shortage of correlative data in general

GOME tropospheric NO₂ intercomparison

Why such differences?

Who is right?

Van Noije et al., ACP, 2006

The 3 steps to tropospheric NO₂ VCDs

STEP 1: DOAS → NO₂ SCD

STEP 2:

Remove the stratospheric part → tropospheric NO₂ (TSCD)

STEP 3:

Convert TSCD into tropospheric VCD_{NO2}

$$VCD_{NO_2} = \frac{TSCD}{AMF}$$

Examples of solutions currently in use

Property	Current treatment in AMF calculation	Groups
Surface albedo	- GOME/TOMS data base	All groups
Cloud fraction and cloud top height	 Screening based on cloud fraction Explicit correction using IPA and accounting for ghost column 	- Bremen, Heid - KNMI, NASA, SAO
NO ₂ profiles	ScenariosMonthly mean profiles (MOZART)Daily profiles (GEOS-CHEM)Daily profiles (TM4)	Heid, NASABremenSAOKNMI
Aerosols	NeglectedScenarios (Lowtran)Implicitly corrected by cloud treatmentComplex aerosol model	HeidBremenKNMI, NASASAO

Nitrogen Dioxide (1)

Retrieval Challenges

- Most retrievals calculate same Slant Column Density
- Air Mass Factor calculation differs by research group
- Different versions of column NO2 and trop. NO2 (level 1B publ.)

Need for validating retrieval input and satellite output data

- NO2 profiles in polluted regions, NO2 diurnal cycle
- Cloud fraction and cloud height (related issue)
- Total / tropospheric NO2 columns in polluted regions

Campaigns versus Networks

- DANDELIONS-1 and 2 have proven relevance of observations
- Need for network in polluted regions providing continuity

Ground-based NO₂ measuring instruments

Chemiluminescent NO_x analyzer

DOAS, LIF, TILDAS, LIDAR (research grade instruments)

Molybdenum converter

- ► Commonly used instrument
- ► Specific to NO
- ▶ Indirect measurement of NO₂
- Significant interference from other reactive nitrogen compounds

Photolytic converter

- ► Specific to NO₂
- Some interference from HONO
- ▶ Not widely available

Interference in molybdenum converter analyzer

Compounds	Conversion efficiency	Experiments
NO ₂ , ethylnitrate (C2H5NO3)	~ 100%	Winer et al., 1974
PAN (Peroxyacytyl nitrate)	92%	Winer et al., 1974
HNO ₃ , PAN, n-propyl nitrate, n-butyl nitrate	≥98%	Grosjean and Harrison, 1985
Ammonia, gas phase olefins, particulate nitrate	No significant interference	Dunlea et al., 2007

Difficult issue: Loss of HNO₃ on stainless steel of inlet

Difficult to quantify the conversion efficiency

Nitrogen Dioxide (2)

Ground Truth

- Molybdenum systems measure more than NO2
- Most NO2 specific systems are "research grade"
- NO2 lidar systems are expensive

"A Brewer/Dobson"-like network for NO2

- Reference network of observations providing continuity
- SAOZ/DOAS network at sunrise and sunset insufficient (model)
- Pandora, direct sun, (mini)MAX-DOAS, in-situ, Double Brewer

Total Ozone Column

- OMI retrievals at high SZA remain challenging (e.g. OMI-TOMS)
- Same holds for ground based observations (e.g. single Brewer)
- SAUNA-I and SAUNA-II may provide answers
- If not sufficient a SAUNA –III is needed

- Cloud height influence identified (climatology vs O2-O2)
- Need for analysis TC-4 data (lidar, CAFS)
- If not sufficient need for more campaign data

Tropospheric Ozone Column

Strong interest from Air Quality perspective

- Air quality constituent, respiratory illnesses
- Obtained from OMI-MLS and other techniques (e.g. Schoeberl)
- \sim 10% of total column, 1%*300DU=3DU=10% of trop

Campaigns versus Networks

- Aircraft in-situ/remote sensing in polluted regions
- (tethered) Balloons and Ozone lidars in polluted regions
- Ground truth with (mini) MAX-DOAS

Aerosols

Retrieval Issues

- Retrievals use auxiliary data (surface albedo, aerosol microphysical properties, wind speed, etc.)
- Retrievals themselves are accurate (χ 2), outcome does not correlate well with Aeronet or Sat-Sat (MODIS, PARASOL)

Validation of auxiliary data

- Aerosol microphysical properties, global distributions of aerosols (e.g. type), layer altitudes, transport
- Airborne campaigns flying PALMS-like systems (e.g. type)

Results of OMAERO-MODIS Comparisons

1-21 June 2006

Oceans worldwide

No sunglint

ALL collocations (regardless of OMI/MODIS coverage and MODIS QA)

Only pixels completely covered by sufficiently cloud-free and quality-assured MODIS pixels

Good agreement with quality-assured MODIS AOT

AERONET Comparison Examples – 2005

MD Science Center

OMAERO tends to overestimate over land

Lat: 39.3 deg Lon: -76.6 deg Alt: 15.0 m

- Weakly absorbing
- Biomass burning
- Desert dust

r = 0.88

Sulphur Dioxide (SO2)

Retrieval issues

Depends on height of layer, profile and aerosols

In situ SO2 observations from aircraft

- near volcanoes for plume characterization
- areas of high SO2 pollution (China, East Europe)
- Importance of aircraft profiling of SO2 in PBL
- simultaneous measurements of aerosol type (dust vs sulfate or soot) and SO2 profiles.

Ground based column SO2 measurements

- double Brewer instruments (not single Brewers)
- (MAX)-DOAS type systems
- need for advanced Brewer SO2 algorithm

First validation during EAST-AIRE regional experiment over NE China in April 2005. SO₂ observations from instrumented aircraft flights are compared with OMI SO₂ maps.

Clouds

Clouds and Retrievals

- Cloud height (UV-VIS-IR) and Cloud fraction (model dep.)
- Both influence trace gas retrievals, particularly tropospheric column estimates but also total ozone column (e.g. OMI-TOMS)

Validation

- Sat-Sat is upcoming (e.g. MODIS, Parasol, CloudSat, Calipso)
- TC-4 data will help to validate / evaluate OMI data
- Ground radar/lidar for PBL and cloud height

Collection 3 Retrievals: Outlook

- Standard Data Products: HCHO, BrO, HCHO
 - Check with validation sources
 - Fine-tune fitting window
 - Optimize smoothing
 - Take a closer look at Spatial Zoom Da
- Science Data Products: C
 - Glyoxal: migration to C
 - et, but we keep looking Iodine Monoxide:
- Time Fram
 - products: Delivery of new version 1.1.0 in time for er to L1b Collection 3 to forward (Summer 2007)
 - and complete reprocessing with v1.1.0
 - Science data products: Migration will proceed in parallel with update of standard products